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Abstract

This paper presents a novel approach called the boundary integrated neural

networks (BINNs) for analyzing acoustic radiation and scattering. The method

introduces fundamental solutions of the time‐harmonic wave equation to encode

the boundary integral equations (BIEs) within the neural networks, replacing the

conventional use of the governing equation in physics‐informed neural networks

(PINNs). This approach offers several advantages. First, the input data for the neural

networks in the BINNs only require the coordinates of “boundary” collocation points,

making it highly suitable for analyzing acoustic fields in unbounded domains. Second,

the loss function of the BINNs is not a composite form and has a fast convergence.

Third, the BINNs achieve comparable precision to the PINNs using fewer collocation

points and hidden layers/neurons. Finally, the semianalytic characteristic of the BIEs

contributes to the higher precision of the BINNs. Numerical examples are presented

to demonstrate the performance of the proposed method, and a MATLAB code

implementation is provided as supplementary material.
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1 | INTRODUCTION

The boundary element method (BEM) has gained recognition as a

formidable technique for numerically analyzing acoustic fields, owing

to its semianalytical nature and boundary‐only discretization.1,2

By incorporating fundamental solutions into the BEM, the time‐

harmonic wave equation for acoustic problems, along with boundary

conditions and the Sommerfeld radiation condition at infinity, can be

transformed into boundary integral equations (BIEs).3 Consequently,

the BEM offers several advantages, including the reduction of

problem dimensionality by one and the direct solution of unbounded

domain problems without the need for special treatments.

Over the past decade, significant attention has been directed

toward machine learning, owing to the remarkable advancements in

computing resources and the abundance of available data.4 Among

the prominent tools in machine learning, deep neural networks

(DNNs) have emerged as outstanding approximations of functions,

demonstrating immense potential for numerical simulations of partial

differential equation (PDE) problems.5,6 Up to now, numerous

DNN‐based approaches have been devised to tackle PDEs, including

physics‐informed neural networks (PINNs),7–9 the deep Galerkin

method (DGM),10,11 and the deep Ritz method (DRM).12,13 The

aforementioned DNN‐based methods directly approximate the

solution of problems using a neural network. Subsequently, a loss
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function or composite form is constructed, incorporating information

from the residuals of the PDE with boundary/initial conditions or the

energy functional form.

There have been remarkable contributions in acoustic numerical

analysis through the utilization of DNN‐based methods.14,15 The

DNNs are typically trained and applied in finite domains, which poses

challenges when directly using them to solve unbounded domain

problems. Very recently, Lin et al.16 made the first attempt to integrate

neural networks with indirect BIEs for solving PDE problems with

Dirichlet boundary conditions. Following this, Zhang et al.17 utilized

neural networks to approximate solutions of direct BIEs using

nonuniform rational B‐splines (NURBS) parameterization of the

boundary for potential problems. The aforementioned approaches

are theoretically well‐suited for addressing problems in unbounded

domains. However, they have not been empirically validated by related

problems in the references mentioned. Sun et al.18 combined the

neural networks with the BIEs to tackle potential and elastostatic

problems, especially for cases with infinite/semi‐infinite regions.

In this paper, we propose a novel approach called the boundary

integrated neural networks (BINNs) to analyze acoustic problems in

both bounded and unbounded domains. The method involves the

approximated solutions of neural networks, trained solely on boundary

collocation points, into the direct acoustic BIEs using quadratic

elements. The loss function is then constructed based on the BIE

residuals and is minimized specifically at these collocation points.

Three numerical examples with various types of boundary conditions

are provided to validate the proposed method. The numerical results

obtained using the developed approach are compared with those

obtained using the PINNs and the exact solutions.

2 | MATHEMATICAL FORMULATION FOR
ACOUSTIC PROBLEM

The time‐harmonic wave equation,19 commonly referred to as the

Helmholtz equation, can be expressed in two‐dimensional (2D) domain

Ω as follows:

x x xp k p( ) + ( ) = 0, Ω,2 2 ∈ (1)

where p represents the complex acoustic pressure, while k denotes

the wave number. The wave number, defined as ω c/ , corresponds to

the ratio of the angular frequency ω to the speed of the acoustic

wave c in the medium Ω. Equation (1) is subject to Dirichlet and

Neumann boundary conditions (BCs) as

x x xp p( ) = ¯ ( ), Γ ,D∈ (2)

x
x

n x
x xq

p
ρωv( ) =

∂¯ ( )

∂ ( )
= i ¯ ( ), Γ ,N∈ (3)

where n x( ) represents the outward unit normal vector to the boundary

Γ at point x , ρ denotes the density of the medium, i means the imaginary

unit, xv̄ ( ) is the normal velocity, and the upper bars on the pressure

and normal velocity indicate the known functions. Furthermore, as the

distance r from the source tends to infinity, it is essential for the

pressure field to satisfy the Sommerfeld radiation condition20,21 as







r

p r

r
kp rlim

∂ ( )

∂
− i ( ) = 0.

r→∞
(4)

3 | BINNS

3.1 | BIEs

By incorporating the fundamental solutions, the time‐harmonic wave

equation for acoustic pressure can be transformed into an integral

form3 represented as

∫ ∫x x y y y x y y y xp F p G q( ) + ( , ) ( )dΓ( ) = ( , ) ( )dΓ( ),   Ω,
Γ Γ

∈ (5)

where x and y represent the source and field points, respectively,

while x yG ( , ) and x yF ( , ), respectively, denote the fundamental

solutions of the time‐harmonic wave equation and its corresponding

normal derivatives, yq ( ) is the normal derivative of acoustic pressure

yp ( ). x yG ( , ), and x yF ( , ) for 2D problems are defined as

x y x y x y
x y

y
G H kr F

G

n
( , ) =

i

4
( ( , )), and ( , ) =

∂ ( , )

∂ ( )
,0

(1) (6)

whereH0
(1) represents the first kind Hankel function of order zero, r is the

distance between points x and y . Taking the limit as x in Equation (5)

approaches the boundary Γ, we obtain

∫ ∫x x x y y y x y y y

x

C p F p G q( ) ( ) + ( , ) ( )dΓ( ) = ( , ) ( )dΓ( ),

         Ω,
Γ

CPV

Γ

∈
(7)

in which xC ( ) = 0.5 as the boundary near point x is smooth, and ∫Γ
CPV

denotes the integral evaluated in the sense of Cauchy principal value

(CPV). In this study, regular integrals are computed using the standard

Gaussian quadrature with 20 Gaussian points, while the singular

integrals are evaluated using a direct method developed by Guiggiani

and Casalini22 for CPV integrals. Also, BIEs need to treat the nearly

singular integrals when calculating the physical quantities near the

boundary. It is widely acknowledged that the handling techniques for

singular and nearly singular integrals in BIEs have reached a high level

of maturity. However, the detailed methods for handling these special

integrals are beyond the scope of this work. Interested readers are

referred to relevant Ref. 23–25 for further information.

3.2 | Discretization of BIEs

We discretize the BIEs using discontinuous quadratic element.26

The shape functions, denoted as N ξ i( )( = 1, 2, 3)i , of the elements are

assumed to have the following forms:

N ξ
ξ ξ

N ξ ξ ξ N ξ
ξ ξ

( ) =
( − 1)

2
, ( ) = (1 − )(1 + ), and ( ) =

( + 1)

2
,1 2 3 (8)
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in which ξ [−1, 1]∈ indicates the dimensionless coordinate. Then, the

geometry of each quadratic element can be described as

y y y yN ξ N ξ N ξ= ( ) + ( ) + ( ) ,1 1 2 2 3 3 (9)

where y y yξ ξ ξ( = −1), ( = 0), and ( = 1)1 2 3 denote the right, middle,

and left points of the mentioned boundary element as shown in

Figure 1, respectively. The pressure and its normal derivative on the

boundary element are approximated by quantities p q i, ( = 1, 2, 3)i i

on points y y yξ α ξ ξ α′ ( = − ), ′ ( = 0), and ′ ( = )1 2 3 in Figure 1, expressed

as follows:
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p( ) = + + ,1 1 2 2 3 3 (10)



 


 


 


 


 


yq N

ξ

α
q N

ξ

α
q N

ξ

α
q( ) = + + ,1 1 2 2 3 3 (11)

where α (0, 1)∈ . In the numerical calculations of this work, the

value of α is set to 0.8. It should be noted that the parameter α in

Equation (10) or Equation (11) is free to choose a value from the range

(0, 1), which has little influence on the numerical accuracy of the

present method.

Based on the aforementioned discontinuous quadratic element,

the discretized form of the BIE (7) is given as

∫

∫

∑ ∑

∑ ∑

x x x y

x y

C p p F ξ N ξ α J ξ ξ

q G ξ N ξ α J ξ ξ

( ) ( ) + ( , ( )) ( / ) ( )d

  = ( , ( )) ( / ) ( )d ,

m m

i

N

j
j
i m

i j i

i

N

j
j
i m

i j i

=1 =1

3

−1

1

=1 =1

3

−1

1
(12)

where N represents the number of boundary elements,

x m N( = 1, 2, …, 3 )m are boundary collocation points and selected to

be the same set as points y′j (see Figure 1) on these elements, p qandj
i

j
i,

respectively, denote the pressure and its normal derivative at the jth

collocation point of the ith element, and J ξ( )i represents the Jacobian of

transformation from the global coordinate y to the dimensionless

coordinate ξ for integrals at the ith element.

After discretizing the BIEs through the process mentioned

earlier, we can define the following two functions with Equation

(12) to facilitate the construction of the loss function in

subsequent steps

∫∑ ∑x p x x

x y

LE C p p

F ξ N ξ α J ξ ξ

( , ) = ( ) ( ) +

  ( , ( )) ( / ) ( )d ,

m m m

i

N

j
j
i

m
i j i

=1 =1

3

−1

1

(13)

∫∑ ∑x q x yRE q G ξ N ξ α J ξ ξ( , ) = ( , ( )) ( / ) ( )d ,m

i

N

j
j
i m

i j i
=1 =1

3

−1

1

(14)

where { }p p= j
i

j

i N

=1,2,3

=1, …,

and { }q q= j
i

j

i N

=1,2,3

=1, …,

.

3.3 | Neural networks and loss function
of the BINNs

We present the construction of the BINNs by seamlessly integrating

neural networks and the BIEs in this section. As illustrated in Figure 2,

we utilize a fully connected neural architecture including the input

layer, the L hidden layers, and the output layer. The number of

neurons in l hidden layer is set to nl. Based on the neural networks

approximation, the real and imaginary parts of trial solutions of

pressures at a collocation point x can be expressed as

x w b xp ƛ ƛ ƛRe{ ( , , )} = ( ( (…( ( ))))),L L1 −1 1 (15)

x w b xp ƛ ƛ ƛIm{ ( , , )} = ( ( (…( ( ))))),L L2 −1 1 (16)

where k( = 1, 2)k and ƛ l L( = 1, 2, …, )l are linear and nonlinear

mappings, expressed as follows

wg g b( ) = + ′ ,k k k  (17)

w bƛ g σ g( ) = ( + ),l l l (18)

with weights w wR R n, * ( = 2)k
n

l
n n

0L l l−1∈ ∈  , biases bb R R′ , ′k l
nl∈ ∈ ,

and the activation function σ . Here, Table 1 lists some commonly used

activation functions. To obtain the normal derivatives of acoustic

pressures approximated by the above neural networks, we employ the

“dlgradient,” which is an automatic differentiation function in the Deep

Learning Toolbox of MATLAB. Additionally, complex acoustic pressure

is not directly approximated using a neural network due to limitations

of some functions in the Deep Learning Toolbox, which does not

support computations involving complex numbers.

We construct two different forms of loss functions and will explore

their performance in the next sections. First, we incorporate the known

pressures p and/or normal derivatives q directly into the BIEs, creating

the following loss function referred to as Loss

∑ x p x qLoss
N

LE RE=
1

3
( ( , ) − ( , )) ,

m

N
m m

=1

3
2 (19)

where the unknown p and/or q on the boundary are approximated by

the neural networks. For the second form of the loss function, we

approximate both the pressures and normal derivatives in the BIEsF IGURE 1 Discontinuous quadratic element.
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and boundary constraints using the neural networks. The loss

function named as Loss LossBC is then constructed as

∑ ∑

∑

x p x q p p

q q

Loss
N

LE RE
N

N

=
1

3
( ( , ) − ( , )) +

1
( − )

+
1

( − ) ,

BC
m

N

m m

m

N

m

N

=1

3

2

D =1
D D

2

N =1
N N

2

D

N
(20)

where the subscripts D and N, respectively, denote the Dirichlet

and the Neumann BC, ND and NN indicate the numbers of Dirichlet

and Neumann boundary collocation points, respectively, and the

superscript bar represents the known quantities. It should be noted

that the BINNs are developed based on the BIEs and thus are

unsuitable for numerical simulations of problems without fundamen-

tal solutions.

3.4 | Optimization of parameters and solution
of pressure at interior point

In the previous sections, we have established the architecture of the

neural networks and defined the loss function for the BINNs. The

next step is to optimize the weights and biases of each neuron by

minimizing the corresponding loss function, either Equation (19) or

Equation (20). To accomplish this optimization process, we utilize the

powerful and widely used “fmincon” function in MATLAB. The

“fmincon” is specifically designed to minimize constrained nonlinear

multivariable functions.

By applying this optimization approach, we are able to obtain

accurate numerical results for the unknown pressures and normal

derivatives along the boundary. Once the pressures p and normal

derivatives q at the boundary collocation points are determined, we

can easily calculate the numerical solution for the pressure at any

interior point using Equation (5).

4 | NUMERICAL EXAMPLES

To evaluate the performance of the BINNs, several benchmark

examples involving bounded and unbounded domains under

various BCs are provided. The accuracy of the present approach is

thoroughly investigated by examining the influence of parameters

such as the hidden layer number, neuron number in each layer, and

the choice of activation function. The numerical results calculated by

the BINNs are compared against those obtained using the traditional

PINNs as well as the theoretical solutions.

F IGURE 2 The framework of the boundary integrated neural networks.

TABLE 1 Some commonly used activation functions.

Arctan Sigmoid Swish Softplus Tanh

σ z( ) zarctan( ) 1

1 + e z−
z

1 + e z− ln(1 + e )z e − e

e + e

z z

z z

−

−
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All the MATLAB codes used in this study are executed on a

computer equipped with an Intel Core i9‐11900F 2.5 GHz CPU and

64 GB of memory. The precision of the numerical results is assessed

using relative error, which is defined as27

∑ ∑p p pRelative error (RE) = (˜ − ) / ,
i

M
i i i

M
i=1

2
=1

2 (21)

where M denotes the number of calculated points, and p̃i and pi

are numerical and analytical solutions at ith calculated point,

respectively.

4.1 | Interior acoustic field

As the first example, we consider the distribution of acoustic pressure

in a rectangle domain with a length of 3m and a height of 1.5m,

as illustrated in Figure 3. The center of the domain is (1.5, 0.75).

The boundary is subject to two different cases of BCs.

Case 1: Dirichlet BC.

The pressure on the boundary is specified as

p x x kx kx x x( ′, ′) = cos( ′) + i sin( ′), ( ′, ′) Γ.1 2 1 2 1 2 ∈ (22)

Obviously, the analytical solution for this case is p x x( , ) =1 2

kx kx x xcos( ) + i sin( ), ( , ) Ω1 2 1 2 ∈ .

Initially, we assess the performance of the BINNs using

two distinct forms of loss functions. Four distinct neural architec-

tures are configured as follows: (a) a single hidden layer consisting

of 10 neurons; (b) a single hidden layer consisting of 20 neurons;

(c) two hidden layers, each with 10 neurons; and (d) two hidden

layers, each with 20 neurons. The training process for optimiza-

tion stops when the iteration count reaches 10 000. A total of

270 boundary collocation points, corresponding to 90 boundary

elements, are utilized. The activation function selected for

neural networks is σ z z( ) = /(1 + e )z− . The wave number is set

to k = 2m −1.

Using the BINNs with Loss and LossBC , Table 2 presents the

relative errors of the real and imaginary components of the pressure

along the evaluated line x = 0.75m2 with 30 equally spaced points for

calculation purposes. The numerical results obtained through the use

of Loss showcase superior accuracy when compared to the results

obtained using LossBC . Remarkably, even using the networks with a

single hidden layer consisting of 10 neurons, the present method

with Loss achieves high accuracy in the numerical results. Addition-

ally, there is a slight improvement when employing more hidden

layers or increasing the number of neurons in each layer. In contrast,

the BINNs with LossBC require a greater number of hidden layers and

neurons to attain sufficiently accurate results.

Figure 4 illustrates the convergence process of two desig-

nated loss functions Loss and LossBC over iterations ranging from 1

to 10 000, with values recorded at every 100 iterations. It is

apparent that Loss exhibits a faster convergence rate compared to

LossBC. Therefore, the BINNs with Loss have a better performance

in comparison to that with LossBC , as indicated in Table 2. To

expedite the convergence process of the loss function LossBC , the

incorporation of additional learning techniques is necessary to

balance its different loss terms. Consequently, Loss stands as the

superior choice for an efficient loss function in the context of

BINNs when compared to LossBC . Henceforth, the BINNs will

employ Loss in all subsequent computational processes unless

otherwise specified.

Next, we present a comparison of the accuracy of the

numerical results obtained using the BINNs and the traditional

PINNs. The same calculated points are distributed on the line

x = 0.75m2 . The wave number, activation functions of the neural

networks, and optimization stopping criteria for both methods

remain consistent with the previous settings. The BINNs adopt a

single hidden layer comprising 20 neurons, while the PINNs

utilize two different networks: (a) a single hidden layer with 20

neurons, and (b) three hidden layers, each containing 20 neurons.

The collocation points for the PINNs are uniformly distributed

within the rectangular domain and its boundary, while for the

BINNs, they are only placed on the boundary. Figures 5 and 6 plot

the convergence curves of the pressures obtained by the BINNs

and the PINNs as the number of collocation points increases.
F IGURE 3 The dimension of the rectangle domain and the BCs
of case 2.

TABLE 2 Errors of pressures by the BINNs based on four neural networks.

Error

Loss LossBC

a b c d a b c d

pRe{ } 2.38E−06 4.66E−07 5.74E−07 1.38E−07 2.07E−02 2.77E−03 4.09E−05 3.85E−05

pIm{ } 6.43E−07 7.30E−08 2.88E−07 9.12E−08 3.61E−03 7.41E−04 8.96E−05 5.62E−05
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Clearly, the BINNs exhibit a faster and more stable convergence

rate compared to the PINNs with networks “a” or “b.” Further-

more, the precision of the pressures evaluated by the BINNs is

higher even with a smaller number of collocation points, as

compared to the PINNs. Therefore, to achieve comparable

precision in pressure calculations, the BINNs necessitate signifi-

cantly fewer collocation points and hidden layers/neurons

compared to the PINNs. This observation also demonstrates that

the BINNs exhibit higher computational efficiency in comparison

to the PINNs.

Case 2: Mixed BCs.

The mixed BCs are taken into account in this particular case. As

depicted in Figure 3, the left, upper and lower boundaries of the

domain are assumed to be rigid, while the right boundary is subjected

to a specific condition as

p x x x x(3, ′) = sin ′ + i cos ′ , (3, ′) Γ.2 2 2 2 ∈ (23)

The analytical solution for the case is not available.

The wave number is assumed to be k = 2m−1. Both the BINNs

and the PINNs are employed for the numerical simulation of this case

to make a comparison. The activation functions of the neural

networks remain the same as in case 1, and the training process for

optimization stops after 10 000 iterations. The BINNs use 288

collocation points and a single hidden layer with 20 neurons, while

the PINNs use 1624 collocation points and three hidden layers, each

F IGURE 4 Convergence process of loss functions constructed with different neural architectures.

F IGURE 5 Convergence curves of pressures by the boundary
integrated neural networks (BINNs) with different number of
collocation points.

F IGURE 6 Convergence curves of pressures by the physics‐
informed neural networks (PINNs) with different number of
collocation points.
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with 25 neurons. Figure 7 displays the numerical results of the

pressures in the entire computational domain. As observed from the

figure, the numerical results obtained by the BINNs show good

agreement with those calculated by the PINNs.

4.2 | Acoustic radiation of an infinite pulsating
cylinder

The second example focuses on the analysis of acoustic radiation

from an infinite pulsating cylinder. The cylinder has a radius of

R = 1m, and its center is located at (0, 0). The boundary of the

structure has a normal velocity amplitude of v̄ = 1m/s. The analytical

solution for the pressure can be determined as

p r ρcv
H kr

H kR
r R( ) = i ¯

( )

( )
, ≥ .

0
1

1
1

(24)

whereH i( = 0, 1)i
1 denotes the ith order Hankel function of the first kind.

The medium for the propagation of acoustic waves is assumed to be air,

with a density of ρ = 1.2 kg/m3 and a wave speed of c = 341 m/s.

In this simulation, the wave number k = 1 m−1 is selected. The

BINNs employ neural networks consisting of two hidden layers, each

comprising 10 neurons. The training process for optimization

terminates after 2000 iterations. The present approach utilizes 150

collocation points on the boundary. The chosen activation function is

“Swish,” as specified in Table 1. Calculated points are distributed

within a domain x x x x x x{( , ) + > 1, −5 < , < 5}1 2 1
2

2
2

1 2 . Figure 8

presents the contour plots of relative errors for the real and

imaginary components of pressures at the calculated points, as

evaluated by the BINNs. It is evident that the present approach yields

satisfactory numerical results.

Maintaining the previous settings unaltered, we proceed to

validate the impact of various activation functions listed inTable 1 on

the developed method. Table 3 shows the numerical errors of

pressures in domain x x x x x x{( , ) + > 1, −5 < , < 5}1 2 1
2

2
2

1 2 , along

with the CPU time and the final values of Loss, obtained using the

BINNs with different activation functions. From the table, it indicates

that the choice of activation functions has minimal effect on the

precision, convergence process of the loss function, and the

efficiency of the BINNs.

4.3 | Acoustic scattering of an infinite rigid cylinder

As the last numerical example, we consider an acoustic scattering

phenomenon. A plane incident wave, with an amplitude of unity,

travels along the positive x‐axis and impinges on an infinite rigid

cylinder centered at point (0, 0) with a radius of R = 1m. The

analytical solution of scattering field

∑p r θ ε
J kR

H kR
H kr nθ r R( , ) = − i

′ ( )

( )
( )cos( ), ≥ ,

n
n
n n

n
n

=0

∞

1′
1

(25)

where Jn denotes the nth order Bessel function,Hn
1 represents the nth

order Hankel function of the first kind, θ = 0 along the positive x‐axis,

and εn is the Neumann symbol expressed as


ε

n

n
=

= 1, = 0,

= 2, ≥ 1.n (26)

F IGURE 7 Numerical results of pressures in the rectangle domain: (A) real component (the BINNs); (B) imaginary component (the BINNs); (C) real
component (the PINNs); (D) imaginary component (the PINNs). BINN, boundary integrated neural network; PINN, physics‐informed neural network.
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A neural network with a configuration of two hidden layers, each

consisting of 20 neurons, is utilized for the numerical implementation

of the BINNs. The wave number is set to k = 0.5m−1, and a total of 90

collocation points are distributed on the boundary. The activation

function is set to σ z z( ) = /(1 + e )z− . Two loss functions, specifically

Equations (19) and (20), are reconsidered and incorporated into the

BINNs for analyzing acoustic fields in unbounded domains. Figure 9

depicts the convergence behavior of two designated loss functions,

namely Loss and LossBC , as the iterations progress from 1 to 2 000,

with measurements taken every 50 iterations. Once again, it is

demonstrated that Loss has a better convergence performance when

compared to LossBC.

The number of collocation points on the boundary is adjusted to

300, and the training process for optimization is conducted over 5 000

iterations. All other settings remain unchanged from the previous

F IGURE 8 Numerical results of pressures calculated by the boundary integrated neural networks: (A) relative error of real component of
pressure; (B) relative error of imaginary component of pressure.

TABLE 3 Impact of various activation functions on the BINNs.

Activation functions Arctan Sigmoid Swish Softplus Tanh

Error of pRe{ } 1.10E−06 5.44E−06 9.97E−07 4.59E−07 1.02E−06

Error of pIm{ } 1.20E−06 6.72E−06 1.02E−06 6.67E−07 2.19E−06

Final value of Loss 7.15E−10 1.47E−09 4.87E−10 8.95E−11 2.95E−09

CPU time (s) 21.6 23.5 21.9 22.0 21.8

F IGURE 9 Convergence process of loss functions. F IGURE 10 Variations of relative errors of pressures with
different wave numbers.
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configuration. Employing the BINNs with Loss, Figure 10 displays

the relative errors of pressures in domain x x x x{( , ) 1 < + < 2}1 2 1
2

2
2

across varying wave numbers ranging from 0.5 to 10m−1. As we can

observe in Figure 10, the developed method obtains accurate numerical

results for different wave numbers. Figure 11 presents the relative

errors of pressures at all calculated points within domain

x x x x{( , ) 1 < + < 2}1 2 1
2

2
2 , considering a wave number of k = 5m−1.

It can be observed that maximum relative error of both the real

and imaginary parts of pressures at these calculated points is below

5E−003.

These numerical results obtained using the BINNs further illustrate

the competitiveness of the proposed method in simulating acoustic fields

in unbounded domains, surpassing the traditional PINNs.

5 | CONCLUDING REMARKS

The BINNs is proposed in this paper as a numerical approach for

analyzing acoustic fields in both bounded and unbounded domains.

Unlike the traditional PINNs that combine the governing equation

with neural architectures, the proposed method integrates the BIEs

and neural networks. Through numerical experiments on various

benchmark examples, the BINNs exhibit high accuracy and rapid

convergence. Several notable advantages of the BINNs over the

traditional PINNs in the context of acoustic radiation and scattering

can be summarized as follows:

1) The BINNs only require the coordinates of “boundary” collocation

points as input data for the neural networks. The benefit of this is

that the method is particularly well‐suited for numerical simula-

tions of problems in unbounded domains.

2) The loss function in the BINNs, as defined in Equation (19), is not

a composite form. Therefore, there is no need to consider special

techniques to balance the influence between different terms, as

described in Equation (20) or the loss function used in the PINNs.

The numerical results also demonstrate the fast convergence of

the loss function.

3) To achieve comparable precision in pressure calculations, the

BINNs require significantly fewer collocation points and hidden

layers/neurons compared to the PINNs. As a result, the BINNs

exhibit higher computational efficiency.

4) The BINNs have higher precision attributed to the semianalytic

characteristic of the BIEs, as evident from the numerical errors of

acoustic pressures obtained using this method.

The present approach is introduced to address relatively simple

acoustic problems, and several conclusions are summarized. In the

future, we aim to extend the application of BINNs to structural‐

acoustic sensitivity analysis. In addition, when using the present

method to solve high‐frequency acoustic problems, high wave

numbers may lead to issues such as loss function oscillation or

gradient vanishing, making the optimization process challenging or

even nonconvergent. We remain committed to exploring this

intricate issue in our future research.
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